Redox3D –innovative milestone on the way to sustainable energy

Hydrogen is the central puzzle piece for a successful zero-emissions society, but it is also expensive to produce. This problem is now being countered in the publicly funded project Redox3D. In this research project, WZR ceramic solutions GmbH and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) are working together to develop and manufacture an innovative receiver-reactor concept that will enable the regenerative production of hydrogen. The technology is based on solar thermochemical processes that run on and in complex ceramic structures made of cerium oxide.

The project is devided into two main topics:

  • One is the development of numerical models to evaluate the behaviour of various reactive structures in operation. This part of the project is being carried out by DLR.
  • The other is the production of the reactive ceramic component using additive manufacturing. As part of the project, we will test various AM processes at WZR for manufacturing the complex geometry.

In the future, we will keep you updated on the progress of this renewable energy research project here and on our LinkedIn page.

We would like to thank the Bundesministerium für Wirtschaft und Klimaschutz (German Federal Ministry of Economics and Climate Protection) for funding this future-oriented project.

You might also be interested in

Porous ceramics and how to use them right

Besides the determination of strength, the determination of open porosity and bulk density is the most common analysis we perform in-house – and also one of the simplest. Nevertheless, it is one of the most important test methods for characterising a sample (sometimes even non-destructively). This is because conclusions about other physical properties can be drawn directly from the open porosity.

New equipment at WZR

Anyone who visited us at the ” Keramik+” conference or at a later date will already have seen it: Our latest 3D printer. The CeraFab S65 from Lithoz uses the VPP process, in which a resin filled with particles is cured by light and which also enables the printing of very filigree structures. We have compiled more information on the VPP process here.

Subscribe to our regular newsletter
[newsletter2go form_type=subscribe]
Abmeldung von unserem regelmäßigen Newsletter
[newsletter2go form_type=unsubscribe]